
What we do
Epistimis makes Epistimis Modeling Tool (EMT), a tool for process design and evaluation. EMT
does for (software) processes what Electronic Design Automation (EDA) tooling does for chip
design. It is a platform that allows process designers to specify the data and data flows planned
for a process and then evaluates sets of rules against those designs.

It can be used for any process design – no matter how that process will be implemented. EMT
can already generate source code in a variety of languages for process designs that will be
implemented in software. If desired, that capability can be extended to generate process details
as step-by-step instructions (from text to IKEA style instruction diagrams), workflow
configuration, or other process specification formats.

The initial set of rules EMT will evaluate is data privacy rules, starting with GDPR. Epistimis will
continue to add US state and federal laws as additional rulesets based on demand. These
rulesets will be licensed to users, and maintained so that users can be assured they are always
working with the relevant sets of rules. It will also provide a rule specification capability for
custom rules such as corporate privacy policies.

We plan to add libraries of predefined functionality such as AWS offerings that can be dropped
into process designs. Using these libraries will not only speed process design, they will also
enable generation of configuration information from the design that matches how an offering is
used in the design.

Outputs generated from the tool will consist of 1) Rule evaluation results; 2) Optional code/
configuration generation. Code/ configuration generation will only be done if all rule checks
succeed – so users will always know the results are correct by construction. Rule evaluation
results can be used for Privacy Impact Assessments (PIAs), eliminating the need for manual
input in the PIA process.

Tutorials
1. Basic Conceptual Modeling
2. Conceptual + Components (includes Queries)
3. Wiring Diagrams
4. Privacy / OModel
5. Code Generation

Basic Conceptual Modeling
EMT starts with conceptual data modeling. Conceptual data models focus on the underlying
semantics behind data while ignoring implementation details like units or storage. For example,



think of the concept of ‘Temperature’. At a conceptual level, I don’t have to worry if I’m dealing
with *F or *C. Nor do I care if a Temperature value will be stored in a float, an int, or a string. All
I care about initially is that I’m dealing with Temperature – everything else is a detail that I can
put off for now, and possible ignore forever.

Why can I ignore it? Because in most cases the rules don’t care about those details. Privacy
rules, such as those that deal with ‘Special Categories of Data’ don’t refer to units or storage
details. If my objective is to create a model that can be evaluated against those rules, there is no
need to include that additional detail. I can include that detail later if I want to do something
with that detail (like code generation).

Data modeling starts with ‘Observables’. An Observable is the fundamental concept behind
UDDL modeling. It consists of only a name and a description. Because it consists of only this, the
name and description are important. They define the semantics – what it means - of each
Observable. This is so important that EMT supplies predefined sets of Observables. The core set
– the FACE Shared Data Model – has been defined by the FACE Standards Committee. Because
FACE was originally developed for the US Military, this SDM is focused on physical / engineering
concepts like time, electric current, and location. The content of this SDM is managed by the
FACE Standards Committee. Changes and additions are possible but must go through a rigorous
review process.

EMT also supplies a Privacy Shared Data Model that contains extensions specifically addressing
privacy concepts that are not already defined in the FACE SDM. These include things like special
categories of data and organization/ institution/ business concepts. As with the FACE SDM, this
SDM is also managed, with changes and additions going through the same rigorous review
process. This SDM is managed by Epistimis in collaboration with regulators, partners, and
customers.

Each Observable only tracks a single type. Obviously, we need a way to track groups of data –
we need data structures. That’s where Conceptual Entities come in.

Conceptual Entities contain Composition elements. Each of those Composition elements has a
rolename, a type and a cardinality and a description – all inherited from Characteristic. We
could say that the type of each Composition element is an Observable but that would limit our
ability to create structures of structures. Instead, we want the ability to set the type of each
Composition element to be either an Observable or an Entity. That means we need a new base
class – Composable Element.

Note that Composition elements have ‘rolename’ not ‘name’. The reason is this: The ‘rolename’
specifies the role that Composition element plays in that Entity. It is possible for an Entity to
have multiple Composition elements with the same type but different role names. The
lowerBound and upperBound values of each Composition element determine the overall
cardinality of that element. If the lowerBound = 0 and upperBound = 1, then that element is
optional. If lowerBound = 1 and upperBound = 1, then that element is required. If lowerBound =
0 and upperBound = -1, then that element is an unbounded collection. Other lowerBound and



upperBound values indicate bounded collections that have a minimum and maximum number
of elements.

Note that Entity can specialize another Entity. This is like but not the same as inheritance in OO
languages. Here, specialization only means that the specialization has all the Characteristics of
the thing it specializes. It does not imply ‘is-a’ or polymorphism – why? Because these are just
data structures – they have no functionality – therefore we can say nothing about ‘is-a’ /
polymorphism.

In most cases, Observables and Conceptual Entities will be enough to model everything you
need. But sometimes, you need to define associations between Conceptual Entities that have
attributes. For that, you need Conceptual Associations.

Conceptual Associations are association classes. As you would expect, a Conceptual Association
is a Conceptual Entity (it can have Composition Elements) with the addition of relationships
with other Conceptual Entities. These relationships are handled by Conceptual Participants.
Each participant in a Conceptual Association has a rolename, type, cardinality, and a
description. Each participant attribute has the same meaning as the corresponding attribute for
a Conceptual Composition. In addition, each participant has sourceLowerBound and
sourceUpperBound for defining the cardinality when traversing from the participant’s type to
the association.

While the FACE SDM does not include any Conceptual Entities or Conceptual Associations, the
EMT Privacy SDM does. It includes things like NaturalPerson and other data structures
referenced in various rules. These Conceptual Entities are managed along with the rest of the
Privacy SDM.

When modeling your data, you should prefer these predefined concepts because the
prepackaged rule sets already work with them. If you are concerned that these SDM concepts
contain more than you plan to use, don’t be. You can select slices or subsets of Conceptual
Entities using Conceptual Views.

Conceptual Views use SQL SELECT syntax. The only difference from the standard use of SQL is
this: When SQL is used with a DBMS, the returned result is a set of data selected from data
available in the DBMS at that time. When SQL is used in a UDDL Conceptual View, it defines a
selection / subset / slice of the data that you want to use at a particular point in your model. It
is a static selection in UDDL whereas it is a dynamic selection when used with a DBMS.

View SQL SELECT statements are a subset of SQL – but they cover quite a bit. You can:

1. select specific composition elements;
2. JOIN between different Conceptual Entities;
3. Use aliases
4. Use WHERE clauses



And more.

This tutorial will not go into detail on Views. For that, see the tutorial on Concepts +
Components.

One last thing: You may have noticed Domain and BasisEntity in this final class diagram. Those
are advanced concepts that will not be covered in this set of tutorials. For details, see the Data
Modeling Guide and the UDDL specification.

Conceptual + Components (includes Queries)

Defining data is only the first step. Once you define data, you need to use it. That means
defining Components and the Connections that use that data.

The first step in that process is Views. In the Basic Conceptual Modeling tutorial, you learned
that a View is how you can select slices or subsets of Conceptual Entities.

In this class diagram, you see details on a Conceptual View. Each View can be a single Query or a
CompositeQuery. This approach embodies the Composite pattern, supporting any level of
complexity needed. For now, we consider just single Queries.

Each Query has a specification. That specification is an SQL SELECT statement. Queries support
SQL clauses in the form of:

SELECT select_clause
FROM from_clause
JOIN join_clauses
WHERE where_clause
ORDER BY order_by_clause

Note that JOINs in a Query are not dynamic. Instead, they are used to navigate Association
participant paths. For details on query syntax, see the Data Modeling Guide.

As you might guess, using data means defining components that use that data. In FACE, a
component is called a UnitOfPortability. They come in 2 flavors: PortableComponent and
PlatformSpecificComponent. The distinction between these does not matter at the Conceptual
level. These components each have one or more Connections, each of which defines either an
input to or output from that component.

The Connection Types are:

● ClientServerConnection
● PubSubConnection (Publish – Subscribe)

o QueuingConnection
o SingleInstanceMessagingConnection



The FACE docs provide the detailed differences between these. For our purposes right now, the
important thing to note is that Connections specify how data is transmitted into/out of a
component and reference requestType/responseType/messageTypes that specify the data that
is transmitted over that connection.

The official FACE spec only supports FACE UoP MessageType which uses Templates that are
bound to Views. FACE assumes that Components only work with fully specified data – data that
includes both units (Logical) and storage (Platform) information. Templates are useful when you
want to use code generation because they enable structuring the data in any way you want.
That level of detail is unnecessary when working at the conceptual level / doing rule evaluation.

To reduce the modeling effort required, EMT extends the FACE spec so that ConceptualView and
ConceptualEntity can also be referenced directly on a Connection, bypassing the need for a
Template. Unless you plan to use a Conceptual Entity in its entirety, you will need to specify a
ConceptualView on a Connection.

If you do want to do code generation, then you’ll want to use UoP MessageType on
Connections. As you can see from this diagram, these are then bound to Queries.

Wiring Diagrams
Defining components, either PortableComponents (PCs) or PlatformSpecificComponents (PSCs),
just identifies the capability you want available. You still need to put it to use. To do that, you
need a wiring diagram. These diagrams route data between the outputs and inputs of
component instances.

IntegrationModels (the formal name for wiring diagrams) consist of 2 categories of wiring.
Standardized predefined functionality (source, sink, filter, aggregation, transformation and basic
transportation) is handled using TransportNodes. Application / custom functionality is handled
by UoPinstances, each of which realizes a UnitOfPortability previously specified elsewhere. All
nodes, either TransportNodes or UoPInstances, are wired together in an IntegrationContext
using TSNodeConnections. Note that TransportNodes themselves are also part of a specific
IntegrationContext, whereas UoPInstances are not – the same UoPInstance could appear in
multiple IntegrationContexts.

Before going any further, I need to make sure the concept of ‘realization’ or ‘realizes’ is clear.
Realization, as seen here, is a way of associating a UnitOfPortability (effectively, a class) with all
its UoPInstances (instances of that class). You will see the term ‘realizes’ again in the tutorial
about code generation.

There is another minor distinction between UoPInstances and TransportNodes. UoPInstances
are wired via UoPEndPoints that reference Connections specified on the UnitOfPortability
realized. Those Connections refer to the MessageType (or ConceptualView or ConceptualEntity)
defining the data moving through that interface. TransportNodes are wired via TSNodePorts
that directly reference the MessageType (or ConceptualView or ConceptualEntity).



It should be noted that the predefined functionality handled by TransportNodes is predefined at
the meta-model level. The Privacy Shared Component Model (SCM) will include numerous
predefined components (e.g. AWS/ Azure/ GCP / OCI functionality, and more) – those will use
UnitOfPortability.

Privacy Specific Modeling
Everything discussed so far has been about (usually software) process design. Many privacy laws
require knowing more than just the how and what of a process. To support that, EMT
introduces 2 layers above the UDDL/FACE specification:

● Privacy
● Omodel

EMT introduces two layers to separate reusable pieces from model parts that are specific to a
given organization. The Privacy layer includes most of the extensions to the UDDL/FACE
specifications. This separation is maintained to retain UDDL/FACE compatibility if needed US
DoD purposes. In addition, the ‘Privacy’ layer contains everything except privacy oriented
except organization specific information, making it possible to create Privacy model fragments
that can be reused. Example information tracked in the Privacy layer include purpose, PET,
processingBasis, jurisdiction, and more.

The OModel layer contains organization specific information. It may be possible that SaaS
providers will publish reusable OModel fragments – that is not yet clear. Example information
tracked at the OModel layer include customer/ user base, dataSource (1st vs. 3rd Party),
responsible parties and more.

These layers will evolve rapidly as additional privacy rules are included.

Code Generation
Code generation is optional with EMT. EMT currently supports creation of code stubs in
multiple languages, and data structure definitions in even more. Because these stubs are
generated from the EMT model, they are always correct by construction. Generated code will
always include any needed dynamic checks (e.g. consent). Code will only be generated if the
EMT model passes all rule checks – no code will be generated that would break rules.

Code generation is optional – and requires some additional work to enable. Specifically,
modelers must specify both units and storage for all the data they intend to use. In UDDL, units
are specified at the Logical level, and storage is defined at the Platform level.

The Logical level has the same core organization as the Conceptual level. There are
Measurements which realize Observables, Logical Entities that realize Conceptual Entities,
Logical Compositions that realize Conceptual Compositions, Logical Associations that realize
Conceptual Associations, and Logical Participants that realize Conceptual Participants. The
Logical level also has Views/Queries that realize their Conceptual equivalents.



What does ‘realize’ mean in this context? It is similar to the meaning discussed previously with
UnitOfPortability and UoPInstance. Just as a UoPInstance is a realization of a UnitOfPortability,
so here a Logical element is a realization of its Conceptual counterpart – it is an embodiment of
that concept with specific information, in this case units.

Notice that the major difference for the Logical level is how it handles Measurements. Because
FACE/UDDL was designed initially for US DoD use, it has complete support for engineering/
physical world measurements. While the metamodel for this is complex, FACE/UDDL comes
with a Shared Data Model that includes definitions for many significant measurement systems.
In addition, EMT adds measurement systems for privacy specific concepts. Modelers should
need only choose from available options. If you discover that you need a measurement system
not currently supported by EMT, contact Epistimis and we will update the Privacy SDM with the
measurement system you need.

The Platform level has the same core organization as the Logical and Conceptual levels, with the
same realizations – only the Platform level realizes its Logical Level counterparts. The major
difference at the Platform level is PlatformDataType – this is used to specify the storage used for
the data being realized.

So how does all this work in a model? In this example, we see the Conceptual Entity ‘Dog’. It has
several Composition elements, each an Observable. We also see 2 Logical Entities ‘Dog’ that
both realize the same Conceptual Entity ‘Dog’. The left ‘Dog’ uses metric units while the right
‘Dog’ uses English units. Note that, although not indicated in this diagram, the individual Logical
Compositions realize their corresponding Conceptual Composition elements.

Note that each Logical ‘Dog’ also has 2 Platform Entities ‘Dog’ that realize it. Each Platform
Entity ‘Dog’ realizing the same Logical ‘Dog’ specifies different data storage. Note that it is
possible to define 2 different Platform Entities that have identical storage allocation but realize
different Logical Entities – these are treated as unique Platform Entities.

What does all this mean?

1) Entities that realize the same thing can participate in automatic data conversion. Think
about the Observable ‘Money’. A Conceptual Entity that has a ‘Money’ element may
have a Logical Entity that realizes the ‘Money’ element in Euros and another realization
in USD. Because both these realize the same Observable, it is possible to automatically
convert values in those fields from one set of units to the other. This automated
conversion will automatically be added to generated code whenever needed.

Note that simply having related units is not enough – both Logical realizations must
realize the same Observable. Consider the Observables ‘Temperature’ and
‘TemperatureDelta’. All Logical realizations of either of these Observables will always use
the same units (*F, *C, *K) – but we cannot automatically convert between these
realizations because Temperature and TemperatureDelta don’t mean the same thing.



2) Though not directly supported in FACE/UDDL, EMT will support the use of Platform
Entity ‘generics’ that can be repurposed by simply setting the Logical Entity they realize.
This will prevent combinatorial explosion that could otherwise occur.

3) To make this easier / less tedious, EMT also supports several types of defaults. For
example, every Measurement can have a default storage type. Using default storage
types, a modeler can generate code without specify any model specific Platform level
info. (NOTE: Using default storage implies that every Composition element specified at
the Logical level will be instantiated and will use the logical rolename – both of which
can be overridden if a Platform Entity is specified realizing that Logical Entity.)

While code generation is optional, it has several advantages. As stated above, all generated
code is correct by construction. It won’t be generated if it breaks any rules. If it is generated, it
will compile cleanly and have any dynamic checks needed included. And, it will be possible to
generate code in multiple languages and be assured that all generated code is mutually
compatible – because it all comes from the same EMT model.

Most companies do not start with a clean slate – instead they start with an existing code base. It
is possible to reverse engineer existing code to create an EMT model. There are multiple tools
available that can be used to help with that reverse engineering. Epistimis will consider adding
EMT specific reverse engineering capability if there is customer demand.


